
Mobility Open Architecture Simulation and Tools
Environment

Stephen Balakirsky, Chris Scrapper, Elena Messina
National Institute of Standards and Technology, Gaithersburg, MD

Email: {stephen.balakirsky, chris.scrapper, elena.messina}@nist.gov

Abstract – This paper will describe the Mobility Open
Architecture Tools and Simulation (MOAST) environment.
This environment conforms to the NIST 4D/RCS
architecture [3] and allows simulated and real architectural
components to function seamlessly in the same system. This
permits not only the development of individual components,
but also allows for component performance metrics to be
developed and for the components to be evaluated under
repeatable conditions. The environment is composed of
high-fidelity and low-fidelity simulation systems, a detailed
model of real-world terrain, actual hardware components, a
central knowledge repository, and architectural glue to tie
all of the components together. This paper will describe the
components in detail and provide an example of how the
environment can be utilized to develop and evaluate a single
architectural component through the use of repeatable trials
and experimentation that includes both virtual and real
components functioning together.

1. INTRODUCTION
The development of an embodied multi-agent system is
truly a multi-disciplinary endeavor. It requires skills and
expertise in fields as varied as sensor processing, knowledge
representation, planning, execution and control, and even
basic auto-repair. In addition, the “multi” in multi-agent
implies that there are multiple platforms that may require
multiple safety personnel and a large amount of real estate
to perform over. A lighthearted, but realistic view of the
development cycle may be summarized by:

1. Develop a cool new algorithm for accomplishing
task ‘x’.

2. Code an implementation of algorithm ‘x’.
3. Get code to compile for real vehicle(s).
4. Assemble team to test algorithm on real vehicle(s).
5. Immediately discover implementation bug,

hardware failure, or software change to supporting
subsystem, dismiss team and recode algorithm or
fix vehicle(s).

6. Reassemble team and search in vain for exact same
scenario that caused crash (literally or figuratively)
in 5.

7. Repeat from 3.

As seen from the above summary, much of the development
cycle is out of the control of the algorithm developer.
Vehicle up-time, safety personnel availability, and course
availability play a large role in the development schedule. In

addition, it may be difficult to isolate failures due to a lack
of repeatable trials and the use of software modules that are
being co-developed (which module has the bug?).

The need to develop on real hardware may severely limit the
ability of expertise or resource constrained institutions to
fully participate in the field. In addition, research in a
particular discipline may be constrained by the current state-
of-the-art in unrelated disciplines. For example, when
operating on a real system, the planning community can
only construct plans based on features that the sensor
processing community is able to detect. It is difficult or
impossible to answer the question of how the system’s plans
would be affected if it could see feature ‘x’ at range ‘y’.
Because of this, planning researchers are unable to explore
behaviors that require next generation sensor processing
until after that generation has arrived.

Traditionally, many of these problems have been addressed
by using a simulation environment for algorithm
development and testing. Simulation has benefits that
include reduced competition for scarce resources, no risk of
harm to personnel or equipment, the ability to add as yet
undeveloped capabilities to subsystems, and the ability to
perform repeated tests over vast and varied terrains from the
comfort of your own desk. As a result, an individual code
module can be thoroughly tested and understood before
moving to real hardware.

Numerous simulators have been developed over the years to
assist in the development, testing, and evaluation of
autonomous vehicles. These simulators have provided a
cost effective solution to the development of autonomous
vehicles by alleviating the cost of maintaining an actual
vehicle, test course, and safety facilities in which to
experiment with the systems.

Most simulators developed in the past are dedicated to
testing entire autonomous systems under a specific task in a
static environment, or a single subsystem of the autonomous
system under varied conditions [1,10]. Simulated Highways
for Intelligent Vehicle Algorithms (SHIVA) [15], for
instance, provided realistic sensor models, communication
infrastructure, and a variety of driver models that allowed
for the testing of tactical decision-making in a mixed traffic
environment. SHIVA was designed to allow for migration
of the subsystems being tested in the simulation
environment to the actual vehicle platforms. The View
Simulation System (VSS) [10] provides high performance
graphic facilities to test vision-based autonomous systems.
While both of these systems provide high-fidelity testing of

drussell
Proceedings of the 2005 Knowledge Intensive Multi-Agent Systems (KIMAS) Conference, Waltham, MA, April 18-21, 2005.

certain components, neither provides realistic mobility
models or computation facilities to adequately simulate
complexities that exist in real world environments.

One Semi-Automated Forces (ONESAF) [11] expanded the
realm of simulation environments by providing an open,
modular architecture that simulates vehicle behaviors,
sensors, and weapon systems in a larger multi-agent
environment. ONESAF sacrifices fidelity in order to divert
its computational facilities to controlling multiple entities
autonomously in the environment. Due to the inherent
nature of such a simulation package, ONESAF availability
is limited to U.S. government distribution.

Recently, simulation environments have attempted to
leverage existing technologies to achieve a general-purpose
environment that is capable of simulating the complexities
of multi-agent, feature rich environments. Gamebots [8] is a
multi-agent test-bed for AI that was built on the Karma
game engine of the popular video game Unreal Tournament.
The system provides a client-server architecture that allows
“bots” and humans to interact. Gamebots uses built-in
scripting languages and 3D modeling faculties to allow a
developer to create or modify the simulated environment.
USARSim [16], which in turn was built on Gamebots,
makes effective use of the rich kinematics models that exist
in the Karma game engine to simulate Urban Search and
Rescue environments. USARSim and others have extended
the Gamebots API to provide virtual sensors, decision-
making facilities, and worlds that accompany the simulation
environment.

As more agents are simulated in larger and more complex
worlds, the computational complexity of the simulation
grows. Distributed Virtual Simulation Environments
(DVSE) [5] have been developed to manage this
computational complexity. UTSAF [9,12] is a simulation
bridge between the Unreal game engine and ONESAF. This
bridge parses the standardized Distributed Interactive
Protocol (DIS) used by ONESAF to facilitate the
communication and participation of both simulators in a
single hierarchical distributed virtual simulation
environment. This hierarchical distributed model provides a
high fidelity simulation environment that precisely
simulates entities in a specified sphere of influence, while a
low-fidelity simulator simulates a larger region.
Player/Stage [7] is another example of a hierarchical
distributed virtual simulation environment that was
developed as a package and does not require the use of a
separate bridge for the integration of both the high- and low-
fidelity simulators.

A typical development cycle with the use of a simulator
may be represented by:

1. Develop cool new algorithm for accomplishing
task ‘x’.

2. Code an implementation of algorithm ‘x’.
3. Get the code to compile for simulation engine.
4. Test/debug code in simulated environment.

5. Recode implementation to work with real robot(s).
6. Assemble team to test code on robot(s).
7. Find that simulated world does not accurately

represent real world and that algorithm
redevelopment is necessary.

8. Go to “Classic” Development and Test Cycle.

As shown above, there is still no replacement for testing the
algorithms on the real hardware. The reason for this is that
simulation environments are typically composed of worlds
that do not include false alarms or missed detections, have
perfect command execution, and ideal system performance.
The result of this is that an algorithm that works perfectly in
simulation is not guaranteed to work at all under actual
environmental conditions, platform performance, and
command execution. Therefore, step 5 in the development
cycle calls for the simulated algorithm to be ported and run
on the actual robot hardware. The problem with this is that
differences in interfaces or knowledge requirements often
prevent plug-and-play operation of an architectural
component from the simulation environment to the real
hardware. For many simulation-system/real-hardware
combinations, substantial code and command interface
changes must be made. These changes may introduce new
bugs and may also lead to the discovery that algorithms
have become dependent on unrealistic or non-existent
attributes from the simulation environment.

The next evolutionary step in the distributed simulation
models is to incorporate real hardware in virtual
environments. Player/Stage and RAVE [6] are two
simulation environments that provide numerous controllers
for a variety of vehicle platforms. The real virtual
simulation environments permit seamless integration and
transparent transference of data between the real and
simulated components. This allows for developers to take
advantage of the real mobility characteristics of vehicle
platforms while still providing a controlled environment.

At the National Institute of Standards and Technology
(NIST), the Mobility Open Architecture Simulation and
Tools (MOAST) environment has been developed as a
real/virtual environment that allows researchers to
concentrate their efforts in their particular area of expertise.
This environment conforms to the NIST Real-Time Control
System (RCS) architecture [3] and allows simulated and real
architectural components to function seamlessly in the same
system. This permits not only the development of individual
components, but also allows for component performance
metrics to be developed and for the components to be
evaluated under repeatable conditions. The environment is
composed of high-fidelity and low-fidelity simulation
systems, actual components under test, a detailed model of
real-world terrain, a central knowledge repository, and
architectural glue to tie all of the components together. This
paper will describe the components in detail and provide an
example of how the environment can be utilized to develop
and evaluate a single architectural component through the

use of repeatable trials and experimentation that includes
both virtual and real components functioning together.

2. THE MOAST ENVIRONMENT
The MOAST environment strives to seamlessly integrate
simulation subsystems with real robotic hardware
subsystems. The goal is to allow the individual subsystems
to each perform in the area where and when they do best.
For example, simulation systems can replicate multiple
platforms for the development of multi-platform behaviors.
They allow for repeatable events, and may provide detailed
system/event logging. In addition, by simulating the results
of sensor processing, the potential benefits of detecting new
features or utilizing novel sensing paradigms may be
measured.

However, there is no substitute for real mobility, sensing,
and communications. Therefore, when available, real system
components/subsystems must be able to plug into the
MOAST environment and replace simulated subsystems.
This is made possible through the architectural glue of the
environment. This glue includes a reference model
architecture that includes well defined interfaces and
communications protocols, and detailed specifications on
individual subsystem input/output (IO). The Real-Time
Control System (RCS) reference model architecture has
been selected for the MOAST reference model architecture.
All communications between modules is accomplished over
Neutral Messaging Language (NML) channels [14] that
function as the communication medium.

Architectural Glue
 In order to guarantee real-time operation and decompose
the robotic system into manageable pieces, it was necessary
to utilize a hierarchical architecture that was specifically
designed to accommodate real-time deliberative systems.
The RCS reference model architecture is a hierarchical,
distributed, real-time control system architecture that meets
this need while providing clear interfaces and roles for a
variety of functional elements [2,3].

 a

KNOWLEDGE
DATABASE

SENSORY
PROCESSING

BEHAVIOR
GENERATION

PLAN

PREDICTED
INPUT

UPDATE

STATE

PL
A

N

R
E

SU
L

T
S

PLAN

SIT
U

A
T

IO
N

E

V
A

L
U

A
T

IO
N

OBSERVED
INPUT

COMMANDED
ACTIONS (SUBGOALS)

PERCEIVED
OBJECTS &
EVENTS

COMMANDED
TASK (GOAL)

OPERATOR
INTERFACE

VALUE
JUDGMENT

WORLD
MODELING

EVALUATION

STATUS

STATUS
SENSORY

INPUT

SENSORY
OUTPUT

PEER INPUT
OUTPUT

RCS Node

To Higher and Lower Level
World Modeling

Figure 1. Internal structure of a RCS_NODE (from [3] p. 28).

Through RCS, a clear system hierarchy exists that provides
control ranging from that of individual actuators up to
groups of 10s or 100s of platforms. Each level of the

hierarchy is composed of the same basic building blocks
illustrated in Fig. 1. These building blocks include behavior
generation (task decomposition and control), sensory
processing (filtering, detection, recognition, grouping),
world modeling (knowledge storage, retrieval, and
prediction), and value judgment (cost/benefit computation,
goal priority). While the architecture specifies the general
content and frequency of communications, it does not
provide details on the actual message format. The NML
toolkit is utilized to fill in this information.

The NML toolkit provides general templates for command
and status messages that are transmitted between RCS
modules and automatic tools for communication code
generation based on these templates. As the MOAST
environment is implemented for different domains, these
templates must be flushed out and completed for every
module in the system. As will be discussed later in this
paper, the MOAST environment has been implemented for
on- and off-road robotic vehicles and detailed specifications
exist for all of the vehicle environment communication
channels. During actual operation, JAVA1 based tools are
provided that allow for automatically generated status
windows that provide a complete picture of the
communications hierarchy as well as the content of every
command and status message that is flowing through the
system.

Central Knowledge Repository
The reference model architecture must provide for a means
of coordination amongst peers as well as command and
control of subordinates in order to provide coherent multi-
agent behaviors. While it is feasible that coordination may
be accomplished through the use of status channels, the
MOAST environment provides a central knowledge
repository as an additional means of coordination. This
knowledge repository is based on domain specific schemas
that are implemented through the use of a central SQL
server. In addition to schemas, the knowledge repository
contains policies that uniquely specify which module is
authorized to populate each knowledge field. The populated
schemas constitute a knowledge base that contains
information ranging from a priori environmental data and
module capabilities data to real-time state and status
information. A complete knowledge base for a specific
multi-agent ground robot system has been developed and
will be discussed in later sections.

Detailed Terrain Model
A priori environmental data contained in the central
knowledge repository is derived from a detailed terrain
model contained in the MOAST environment. This model
may be decomposed into a portion that is known a priori

1 Certain commercial software and tools are identified in this paper in order
to explain our research. Such identification does not imply
recommendation or endorsement by the National Institute of Standards and
Technology, nor does it imply that the software tools identified are
necessarily the best available for the purpose.

and a portion that will be discovered through normal agent
operation. A priori information may be preprocessed and
populated into the central knowledge repository where it is
available to all subsystems. Discoverable knowledge is
operated on by simulated sensors and appears as the results
of sensor processing that may be reported thorough NML
status channels or through a central knowledge repository
knowledge base.

Actual Components
The central theme of the MOAST environment is the ability
to test actual individual hardware/software modules. The
only requirement for operating under the MOAST
environment is conformance to the MOAST
communications protocols and formats. The NML
communications libraries are freely available from NIST in
source format as well as precompiled for numerous
operating systems2. Since all modules conform to the same
communications protocols and formats, the module under
test will be unaware of which participating modules are real
and which are simulated.

Figure 2: MOAST implementation including simulated (light) and
virtual (dark) components.

2 See http://www.isd.mel.nist.gov/projects/rcslib/

Simulation Systems
As with actual components, the only requirement on
simulation systems is conformance to the MOAST
communications protocols and formats. Currently,
simulation systems have been used to simulate the results of
sensor processing and platform mobility. By simulating
sensor processing results, experiments may be performed
that utilize repeatable events from as yet unrealized sensor
capabilities, or results from sensors that may be too
expensive, large (weight, volume, or power), or delicate to
place on mobile platforms. Simulated mobility allows varied
repeatable terrain and the inclusion of multiple non-existent
platforms.

3. IMPROVISED EXPLOSIVE DEVICE
IMPLEMENTATION

Under funding from the Army Research Laboratory (ARL),
C. Shoemaker program manager, the MOAST environment
has been implemented to develop the behaviors that a
platoon of robotic vehicles capable of neutralizing an
improvised explosive device (IED) would need to perform.
In performing this mission, a group of robotic agents must
identify and neutralize an IED, otherwise known as a
roadside bomb. A conventional solution (implementation
solely on real hardware) is not possible due to the fact that
there is no known sensor for detecting/neutralizing an IED
and that it would be too dangerous to intentionally place
bombs on roadways around our research facility. A block
diagram of the implemented system is shown in Fig. 2. In
the diagram, the light boxes are simulated components and
the dark boxes are real systems. The system is composed of
three vehicles; all of which have simulated sensing and low-
level mobility.

 Architectural Glue
One of the first jobs for the system designer is to determine
the module interfaces. Whenever possible, it is desirable to
reuse existing interfaces since this allows for the reuse of
entire code modules. In the case of the IED mission, many
of the mobility system behaviors are identical to previously
designed road driving systems that have been constructed
under the MOAST environment [4]. In fact, the entire
subsystem echelon mobility code was used without
modification. As one moves higher in the hierarchy, skills
and behaviors become more specialized for the individual
mission and new behaviors must be added to augment
already existing skills. For example, the existing vehicle
echelon mobility planner was able to plan to drive along a
section of roadway, however no behavior had yet been
created for cautiously driving around a suspected IED. The
existing interface specification must be updated and the
corresponding controllers augmented with this new
behavior. A graceful failure mode of controllers not
compliant with the new specification is still possible
through the report of an “unknown command” over the
systems status channel and error log.

Central Knowledge Repository
As with the module interfaces, the MOAST environment
allows for the reuse of knowledge components that have
been previously developed for other applications. Table 1
depicts the knowledge bases contained in the knowledge
repository and their origin.

Table 1: Knowledge bases that form the central knowledge repository.
Knowledge base Purpose Origin
Road Network
Database

Contains a
hierarchical
decomposition of
road networks
from constant
curvature lane
segments to
complete
roadways.

Reusable
general purpose
knowledge base
originally
developed for
on-road driving
under DARPA
MARS project,
PM Doug Gage
[13].

Vehicle
Characteristics

Contains average
values for common
types of vehicles
and vehicle class
relationships.

Reusable
general purpose
knowledge
base.

Vehicle Sensor
Characteristics

Contains average
values for sensor
ranges, fields of
view, etc.

Reusable
general purpose
knowledge
base.

Vehicle Weapon
Characteristics

Contains weapon
lethality, range,
etc.

Reusable
general purpose
knowledge
base.

Vehicle Status Contains mode,
health, and
location
information.

Reusable
general purpose
knowledge
base.

IED Class
Characteristics

Contains expected
blast radius, safe
approach radius,
etc for various
types of IEDs.

Developed for
IED mission.

Vehicle Team
Composition

Requirements on
sensing and
mobility to fill
different roles in
mission (Leader,
observer, …).

Reusable
general purpose
knowledge base
extended for
IED mission.

IED Instance
Characteristics

Specifics about
potential IEDs
(class, location,
status, …)

Developed for
IED mission.

Error Log Provides global
logging of error
conditions.

Reusable
general purpose
knowledge
base.

As is shown in the table, the majority of the knowledge
bases are general purpose and may be used for multiple
domains. In addition to storing a priori and dynamic

information about objects, the knowledge repository is
useful as a means of coordination and synchronization
amongst peers. For example, the vehicle echelon mission
executor utilizes the vehicle status knowledge base to
synchronize sensing mode changes with changes in mobility
modes.

Detailed Terrain Model
A detailed terrain model has been generated of the NIST
campus. This terrain model consists of a bare earth elevation
array with post spacing of 45 cm (1.5 feet) and root mean
square error (RMSE) of 15 cm (6 inches), color
orthophotography with pixel resolution of 7.5 cm (0.25
feet), and comprehensive vector data. The vector data
includes items such as all road edges, parking lots, parking
lot strips, buildings, sidewalks, lamp posts, signs, etc.

Incorporating a high-fidelity terrain model into the MOAST
environment allows for algorithm performance evaluation
and the ability for mobility planning systems to incorporate
items that are not yet detectable by current state-of-the-art
sensor processing algorithms. For example, as the vehicle
drives through the real world, detected road edges may be
compared with those in the terrain model to measure the
performance of the road detection algorithms. For the case
of the IED mission, it is desirable to have simulated sensor
processing coupled to real mobility. This allows the high-
level behaviors to function even though there are currently
no sensor processing algorithms capable of distinguishing
classes of IEDs.

Actual Components
As shown in Fig. 2, the majority of the system elements
above the subsystem echelon were real components running
on actual system hardware. Through the use of the MOAST
global world model and interface specifications, module
functionality is identical to a completely implemented
robotic platform.

Simulated Components
For this particular implementation of the MOAST
environment, virtual sensing was provided through
interfaces and behaviors added to the OTBSAF simulator.
This simulation system provided IED behaviors (they
explode if approached before disarming, techniques for
disarming, etc.), sensor output that included terrain and
entity features for multiple classes of sensors, and a
visualization of the mission as it progressed.

Low level mobility simulation was performed by an
internally developed simulation system. In the near future,
we will be interfacing to a commercial simulation package
that will provide physics based simulation of vehicle
motion.

4. SUMMARY AND FUTURE WORK
This paper has presented a novel approach to system
development. Under this approach, a new development
cycle may be coined as follows:

1. Develop cool new algorithm for accomplishing
task ‘x’.

2. Code an implementation of algorithm ‘x’.
3. Get code to compile for simulation engine.
4. Test/debug code in simulated environment.
5. Run identical code on real robot.
6. Assemble team to test code on robot.
7. Run only as much code as necessary to validate

algorithm on real robot (everything else is
simulated).

8. Algorithm runs on real robot on first try!

In the near future, this approach will be verified when the
code developed for the IED mission is run (without porting)
on our NIST HMMWV. Additional efforts are also being
directed at developing more complete interfaces for the
various modules and on incorporating a commercial off the
shelf physics based mobility simulator. This simulator will
function off of the MOAST terrain component and will obey
standard MOAST command and control communication
channels.

References

 1. Adobbati, R., Marshal, A., Scholar, A., and Tejada,
S., "Gamebots: A 3D Virtual World Test-Bed For
Multi-Agent Research," Proceeding of the 2nd
Workshop on Infrastructure for Agents, MAS, and
Scalable MAS at Autonomous Agents , 2001.

 2. Albus, J., "Outline for a Theory of Intelligence,"
IEEE Transactions on Systems Man and Cybernetics,
Vol. 21, 1991, pp. 473-509.

 3. Albus, J., et al., "4D/RCS Version 2.0: A Reference
Model Architecture for Unmanned Vehicle Systems,"
NISTIR 6910, Gaithersburg, MD, 2002.

 4. Balakirsky, S. and Scrapper, C., "Planning for On-
Road Driving through Incrementally Created
Graphs," Proceedings of the 7th International IEEE
Conference on Intelligent Transportation Systems,
2004.

 5. Chen, D., Bu-Sung, L., Wentong, C., and Turner, S.
J., "Design and development of a cluster gateway for
cluster-based HLA distributed virtual simulation
environments," 2003, pp. 193-200.

 6. Dixon, K., Dolan, J., Wesley, H., Paredis, C., and
Khosla, P., "RAVE: a real and virtual environment

for multiple mobile robot systems," Vol. 3, 1999, pp.
1360-1367.

 7. Gerkey, B. P., Vaughan, R. T., and Howard, A.,
"The Player/Stage Project: Tools for Multi-Robot and
Distributed Sensor Systems," Proceeding of the
International Conference on Advanced Robotics,
2003, pp. 317-323.

 8. Kaminka, G., Veloso, M., Schaffer, S., Sollitto, C.,
Adobbati, R., Marshal, A., Scholar, A., and Tejada,
S., "Gamebots: A Flexible Test Bed for Multiagent
Team Research," Communication of the ACM, Vol.
45, No. 1, 2002, pp. 43-45.

 9. Manojlovich, J., Prasithsangaree, P., Hughes, S.,
Jinlin, C., and Lewis, M., "UTSAF: a multi-agent-
based framework for supporting military-based
distributed interactive simulations in 3D virtual
environments," Vol. 1, 2003, pp. 960-968.

 10. Matsumoto, Y., Miyazaki, T., Inaba, M., and Inoue,
H., "View Simulation System: a mobile robot
simulator using VR technology," Vol. 2, 1999, pp.
936-941.

 11. Parsons, D. and Whittman Jr., R., "OneSAF Tools
and Processes Promoting and Supporting a
Distributed Development Environment for Multi-
Domain Modeling and Simulation Community,"
Proceedings of the Spring 2004 SIW Conference,
2004.

 12. Prasithsangaree, P., Manojlovich, J. M., Jinlin, C.,
and Lewis, M., "UTSAF: a simulation bridge
between OneSAF and the Unreal game engine," Vol.
2, 2003, pp. 1333-1338.

 13. Schlenoff, C., Balakirsky, S., Barbera, A., Scrapper,
C., Hui, E., Paredes, M., and Ajot, J., "The NIST
Road Network Database: Version 1.0," National
Institute of Standards and Technology, NISTIR 7136,
2003.

 14. Shackleford, W. P., Proctor, F. M., and Michaloski, J.
L., "The Neutral Message Language: A Model and
Method for Message Passing in Heterogeneous
Environments," Proceedings of the 2000 World
Automation Conference, 2000.

 15. Sukthankar, R., Pomerleau, D., and Thorpe, C.,
"SHIVA: Simulated Highways for Intelligent Vehicle
Algorithms," 1995, pp. 332-337.

 16. Wang, J., Lewis, M., and Gennari, J., "USAR: A
game based simulation for teleoperation,"
Proceedings of the 47th Annual Meeting of the
Human Factors and Ergonomics Society , 2003.

